
Package: Rtsne (via r-universe)
September 12, 2024

Type Package

Title T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut
Implementation

Version 0.17

Description An R wrapper around the fast T-distributed Stochastic
Neighbor Embedding implementation by Van der Maaten (see
<https://github.com/lvdmaaten/bhtsne/> for more information on
the original implementation).

License file LICENSE

URL https://github.com/jkrijthe/Rtsne

Encoding UTF-8

Imports Rcpp (>= 0.11.0), stats

LinkingTo Rcpp

Suggests irlba, testthat

RoxygenNote 7.2.3

Repository https://jkrijthe.r-universe.dev

RemoteUrl https://github.com/jkrijthe/rtsne

RemoteRef HEAD

RemoteSha 4a83e12e1e5990e75cbfcbeb98e0a6c164097caa

Contents

normalize_input . 2
Rtsne . 3

Index 9

1

https://github.com/lvdmaaten/bhtsne/
https://github.com/jkrijthe/Rtsne

2 normalize_input

normalize_input Normalize input data matrix

Description

Mean centers each column of an input data matrix so that it has a mean of zero. Scales the entire
matrix so that the largest absolute of the centered matrix is equal to unity.

Usage

normalize_input(X)

Arguments

X matrix; Input data matrix with rows as observations and columns as variables/dimensions.

Details

Normalization avoids numerical problems when the coordinates (and thus the distances between
observations) are very large. Directly computing distances on this scale may lead to underflow
when computing the probabilities in the t-SNE algorithm. Rescaling the input values mitigates
these problems to some extent.

Value

A numeric matrix of the same dimensions as X but centred by column and scaled to have a maximum
deviation of 1.

Author(s)

Aaron Lun

Examples

iris_unique <- unique(iris) # Remove duplicates
iris_matrix <- as.matrix(iris_unique[,1:4])
X <- normalize_input(iris_matrix)
colMeans(X)
range(X)

Rtsne 3

Rtsne Barnes-Hut implementation of t-Distributed Stochastic Neighbor Em-
bedding

Description

Wrapper for the C++ implementation of Barnes-Hut t-Distributed Stochastic Neighbor Embedding.
t-SNE is a method for constructing a low dimensional embedding of high-dimensional data, dis-
tances or similarities. Exact t-SNE can be computed by setting theta=0.0.

Usage

Rtsne(X, ...)

Default S3 method:
Rtsne(

X,
dims = 2,
initial_dims = 50,
perplexity = 30,
theta = 0.5,
check_duplicates = TRUE,
pca = TRUE,
partial_pca = FALSE,
max_iter = 1000,
verbose = getOption("verbose", FALSE),
is_distance = FALSE,
Y_init = NULL,
pca_center = TRUE,
pca_scale = FALSE,
normalize = TRUE,
stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L),
mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L),
momentum = 0.5,
final_momentum = 0.8,
eta = 200,
exaggeration_factor = 12,
num_threads = 1,
...

)

S3 method for class 'dist'
Rtsne(X, ..., is_distance = TRUE)

S3 method for class 'data.frame'
Rtsne(X, ...)

4 Rtsne

Rtsne_neighbors(
index,
distance,
dims = 2,
perplexity = 30,
theta = 0.5,
max_iter = 1000,
verbose = getOption("verbose", FALSE),
Y_init = NULL,
stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L),
mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L),
momentum = 0.5,
final_momentum = 0.8,
eta = 200,
exaggeration_factor = 12,
num_threads = 1,
...

)

Arguments

X matrix; Data matrix (each row is an observation, each column is a variable)

... Other arguments that can be passed to Rtsne

dims integer; Output dimensionality (default: 2)

initial_dims integer; the number of dimensions that should be retained in the initial PCA step
(default: 50)

perplexity numeric; Perplexity parameter (should not be bigger than 3 * perplexity < nrow(X)
- 1, see details for interpretation)

theta numeric; Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for
exact TSNE (default: 0.5)

check_duplicates

logical; Checks whether duplicates are present. It is best to make sure there are
no duplicates present and set this option to FALSE, especially for large datasets
(default: TRUE)

pca logical; Whether an initial PCA step should be performed (default: TRUE)

partial_pca logical; Whether truncated PCA should be used to calculate principal compo-
nents (requires the irlba package). This is faster for large input matrices (default:
FALSE)

max_iter integer; Number of iterations (default: 1000)

verbose logical; Whether progress updates should be printed (default: global "verbose"
option, or FALSE if that is not set)

is_distance logical; Indicate whether X is a distance matrix (default: FALSE)

Y_init matrix; Initial locations of the objects. If NULL, random initialization will be
used (default: NULL). Note that when using this, the initial stage with exagger-
ated perplexity values and a larger momentum term will be skipped.

Rtsne 5

pca_center logical; Should data be centered before pca is applied? (default: TRUE)

pca_scale logical; Should data be scaled before pca is applied? (default: FALSE)

normalize logical; Should data be normalized internally prior to distance calculations with
normalize_input? (default: TRUE)

stop_lying_iter

integer; Iteration after which the perplexities are no longer exaggerated (default:
250, except when Y_init is used, then 0)

mom_switch_iter

integer; Iteration after which the final momentum is used (default: 250, except
when Y_init is used, then 0)

momentum numeric; Momentum used in the first part of the optimization (default: 0.5)

final_momentum numeric; Momentum used in the final part of the optimization (default: 0.8)

eta numeric; Learning rate (default: 200.0)
exaggeration_factor

numeric; Exaggeration factor used to multiply the P matrix in the first part of
the optimization (default: 12.0)

num_threads integer; Number of threads to use when using OpenMP, default is 1. Setting to
0 corresponds to detecting and using all available cores

index integer matrix; Each row contains the identity of the nearest neighbors for each
observation

distance numeric matrix; Each row contains the distance to the nearest neighbors in
index for each observation

Details

Given a distance matrix D between input objects (which by default, is the euclidean distances
between two objects), we calculate a similarity score in the original space:

pj|i =
exp(−∥Dij∥2/2σ2

i)∑
k ̸=i exp(−∥Dij∥2/2σ2

i)

which is then symmetrized using:

pij =
pj|i + pi|j

2n
.

The σ for each object is chosen in such a way that the perplexity of pj|i has a value that is close to the
user defined perplexity. This value effectively controls how many nearest neighbours are taken into
account when constructing the embedding in the low-dimensional space. For the low-dimensional
space we use the Cauchy distribution (t-distribution with one degree of freedom) as the distribution
of the distances to neighbouring objects:

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l 1 + ∥yk − yl∥2)−1

.

By changing the location of the objects y in the embedding to minimize the Kullback-Leibler di-
vergence between these two distributions qij and pij , we create a map that focusses on small-scale
structure, due to the asymmetry of the KL-divergence. The t-distribution is chosen to avoid the

6 Rtsne

crowding problem: in the original high dimensional space, there are potentially many equidistant
objects with moderate distance from a particular object, more than can be accounted for in the low
dimensional representation. The t-distribution makes sure that these objects are more spread out in
the new representation.

For larger datasets, a problem with the a simple gradient descent to minimize the Kullback-Leibler
divergence is the computational complexity of each gradient step (which is O(n2)). The Barnes-Hut
implementation of the algorithm attempts to mitigate this problem using two tricks: (1) approximat-
ing small similarities by 0 in the pij distribution, where the non-zero entries are computed by finding
3*perplexity nearest neighbours using an efficient tree search. (2) Using the Barnes-Hut algorithm
in the computation of the gradient which approximates large distance similarities using a quadtree.
This approximation is controlled by the theta parameter, with smaller values leading to more exact
approximations. When theta=0.0, the implementation uses a standard t-SNE implementation. The
Barnes-Hut approximation leads to a O(nlog(n)) computational complexity for each iteration.

During the minimization of the KL-divergence, the implementation uses a trick known as early
exaggeration, which multiplies the pij’s by 12 during the first 250 iterations. This leads to tighter
clustering and more distance between clusters of objects. This early exaggeration is not used when
the user gives an initialization of the objects in the embedding by setting Y_init. During the early
exaggeration phase, a momentum term of 0.5 is used while this is changed to 0.8 after the first 250
iterations. All these default parameters can be changed by the user.

After checking the correctness of the input, the Rtsne function (optionally) does an initial reduction
of the feature space using prcomp, before calling the C++ TSNE implementation. Since R’s random
number generator is used, use set.seed before the function call to get reproducible results.

If X is a data.frame, it is transformed into a matrix using model.matrix. If X is a dist object, it is
currently first expanded into a full distance matrix.

Value

List with the following elements:

Y Matrix containing the new representations for the objects
N Number of objects
origD Original Dimensionality before TSNE (only when X is a data matrix)
perplexity See above
theta See above
costs The cost for every object after the final iteration
itercosts The total costs (KL-divergence) for all objects in every 50th + the last iteration
stop_lying_iter

Iteration after which the perplexities are no longer exaggerated
mom_switch_iter

Iteration after which the final momentum is used
momentum Momentum used in the first part of the optimization
final_momentum Momentum used in the final part of the optimization
eta Learning rate
exaggeration_factor

Exaggeration factor used to multiply the P matrix in the first part of the opti-
mization

Rtsne 7

Methods (by class)

• Rtsne(default): Default Interface

• Rtsne(dist): tsne on given dist object

• Rtsne(data.frame): tsne on data.frame

Supplying precomputed distances

If a distance matrix is already available, this can be directly supplied to Rtsne by setting is_distance=TRUE.
This improves efficiency by avoiding recalculation of distances, but requires some work to get the
same results as running default Rtsne on a data matrix. Specifically, Euclidean distances should be
computed from a normalized data matrix - see normalize_input for details. PCA arguments will
also be ignored if is_distance=TRUE.

NN search results can be directly supplied to Rtsne_neighbors to avoid repeating the (possibly
time-consuming) search. To achieve the same results as Rtsne on the data matrix, the search should
be conducted on the normalized data matrix. The number of nearest neighbors should also be equal
to three-fold the perplexity, rounded down to the nearest integer. Note that pre-supplied NN
results cannot be used when theta=0 as they are only relevant for the approximate algorithm.

Any kind of distance metric can be used as input. In contrast, running Rtsne on a data matrix will
always use Euclidean distances.

References

Maaten, L. Van Der, 2014. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine
Learning Research, 15, p.3221-3245.

van der Maaten, L.J.P. & Hinton, G.E., 2008. Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research, 9, pp.2579-2605.

Examples

iris_unique <- unique(iris) # Remove duplicates
iris_matrix <- as.matrix(iris_unique[,1:4])

Set a seed if you want reproducible results
set.seed(42)
tsne_out <- Rtsne(iris_matrix,pca=FALSE,perplexity=30,theta=0.0) # Run TSNE

Show the objects in the 2D tsne representation
plot(tsne_out$Y,col=iris_unique$Species, asp=1)

data.frame as input
tsne_out <- Rtsne(iris_unique,pca=FALSE, theta=0.0)

Using a dist object
set.seed(42)
tsne_out <- Rtsne(dist(normalize_input(iris_matrix)), theta=0.0)
plot(tsne_out$Y,col=iris_unique$Species, asp=1)

set.seed(42)
tsne_out <- Rtsne(as.matrix(dist(normalize_input(iris_matrix))),theta=0.0)

8 Rtsne

plot(tsne_out$Y,col=iris_unique$Species, asp=1)

Supplying starting positions (example: continue from earlier embedding)
set.seed(42)
tsne_part1 <- Rtsne(iris_unique[,1:4], theta=0.0, pca=FALSE, max_iter=350)
tsne_part2 <- Rtsne(iris_unique[,1:4], theta=0.0, pca=FALSE, max_iter=650, Y_init=tsne_part1$Y)
plot(tsne_part2$Y,col=iris_unique$Species, asp=1)
Not run:
Fast PCA and multicore

tsne_out <- Rtsne(iris_matrix, theta=0.1, partial_pca = TRUE, initial_dims=3)
tsne_out <- Rtsne(iris_matrix, theta=0.1, num_threads = 2)

End(Not run)

Index

dist, 6

model.matrix, 6

normalize_input, 2, 5, 7

prcomp, 6

Rtsne, 3
Rtsne_neighbors (Rtsne), 3

set.seed, 6

9

	normalize_input
	Rtsne
	Index

