Throw out labels at random | add_missinglabels_mar |
Calculate knn adjacency matrix | adjacency_knn |
Classifier used for enabling shared documenting of parameters | BaseClassifier |
Merge result of cross-validation runs on single datasets into a the same object | c.CrossValidation |
Use mclapply conditional on not being in RStudio | clapply |
Biased (maximum likelihood) estimate of the covariance matrix | cov_ml |
Cross-validation in semi-supervised setting | CrossValidationSSL CrossValidationSSL.list CrossValidationSSL.matrix |
Decision values returned by a classifier for a set of objects | decisionvalues decisionvalues,KernelLeastSquaresClassifier-method decisionvalues,LeastSquaresClassifier-method decisionvalues,LinearSVM-method decisionvalues,SVM-method decisionvalues,svmlinClassifier-method decisionvalues,TSVM-method |
Convert data.frame with missing labels to matrices | df_to_matrices |
diabetes data for unit testing | diabetes |
An Expectation Maximization like approach to Semi-Supervised Least Squares Classification | EMLeastSquaresClassifier |
Semi-Supervised Linear Discriminant Analysis using Expectation Maximization | EMLinearDiscriminantClassifier |
Semi-Supervised Nearest Mean Classifier using Expectation Maximization | EMNearestMeanClassifier |
Entropy Regularized Logistic Regression | EntropyRegularizedLogisticRegression |
Find a violated label | find_a_violated_label |
calculated the gaussian kernel matrix | gaussian_kernel |
Generate data from 2 Gaussian distributed classes | generate2ClassGaussian |
Generate data from 2 alternating classes | generateABA |
Generate Crescent Moon dataset | generateCrescentMoon |
Generate Four Clusters dataset | generateFourClusters |
Generate Parallel planes | generateParallelPlanes |
Generate Sliced Cookie dataset | generateSlicedCookie |
Generate Intersecting Spirals | generateSpirals |
Generate data from 2 circles | generateTwoCircles |
Plot RSSL classifier boundary (deprecated) | geom_classifier |
Plot linear RSSL classifier boundary | geom_linearclassifier |
Label propagation using Gaussian Random Fields and Harmonic functions | GRFClassifier |
Direct R Translation of Xiaojin Zhu's Matlab code to determine harmonic solution | harmonic_function |
Implicitly Constrained Least Squares Classifier | ICLeastSquaresClassifier |
Implicitly Constrained Semi-supervised Linear Discriminant Classifier | ICLinearDiscriminantClassifier |
Kernelized Implicitly Constrained Least Squares Classification | KernelICLeastSquaresClassifier |
Kernelized Least Squares Classifier | KernelLeastSquaresClassifier |
Laplacian Regularized Least Squares Classifier | LaplacianKernelLeastSquaresClassifier |
Laplacian SVM classifier | LaplacianSVM |
Compute Semi-Supervised Learning Curve | LearningCurveSSL LearningCurveSSL.matrix |
Least Squares Classifier | LeastSquaresClassifier |
Loss of a classifier or regression function | line_coefficients line_coefficients,LeastSquaresClassifier-method line_coefficients,LinearSVM-method line_coefficients,LogisticLossClassifier-method line_coefficients,LogisticRegression-method line_coefficients,NormalBasedClassifier-method line_coefficients,QuadraticDiscriminantClassifier-method line_coefficients,SelfLearning-method |
Linear Discriminant Classifier | LinearDiscriminantClassifier |
Linear SVM Classifier | LinearSVM |
LinearSVM Class | LinearSVM-class |
Linear CCCP Transductive SVM classifier | LinearTSVM |
Local descent | localDescent |
Logistic Loss Classifier | LogisticLossClassifier |
LogisticLossClassifier | LogisticLossClassifier-class |
(Regularized) Logistic Regression implementation | LogisticRegression |
Logistic Regression implementation that uses R's glm | LogisticRegressionFast |
Numerically more stable way to calculate log sum exp | logsumexp |
Loss of a classifier or regression function | loss loss,KernelLeastSquaresClassifier-method loss,LeastSquaresClassifier-method loss,LinearSVM-method loss,LogisticLossClassifier-method loss,LogisticRegression-method loss,MajorityClassClassifier-method loss,NormalBasedClassifier-method loss,SelfLearning-method loss,SVM-method loss,svmlinClassifier-method loss,USMLeastSquaresClassifier-method |
LogsumLoss of a classifier or regression function | losslogsum losslogsum,NormalBasedClassifier-method |
Loss of a classifier or regression function evaluated on partial labels | losspart losspart,NormalBasedClassifier-method |
Majority Class Classifier | MajorityClassClassifier |
Moment Constrained Semi-supervised Linear Discriminant Analysis. | MCLinearDiscriminantClassifier |
Moment Constrained Semi-supervised Nearest Mean Classifier | MCNearestMeanClassifier |
Maximum Contrastive Pessimistic Likelihood Estimation for Linear Discriminant Analysis | MCPLDA |
Performance measures used in classifier evaluation | measure_accuracy measure_error measure_losslab measure_losstest measure_losstrain |
Implements weighted likelihood estimation for LDA | minimaxlda |
Access the true labels for the objects with missing labels when they are stored as an attribute in a data frame | missing_labels |
Nearest Mean Classifier | NearestMeanClassifier |
Plot CrossValidation object | plot.CrossValidation |
Plot LearningCurve object | plot.LearningCurve |
Class Posteriors of a classifier | posterior posterior,LogisticRegression-method posterior,NormalBasedClassifier-method |
Predict for matrix scaling inspired by stdize from the PLS package | predict,scaleMatrix-method |
Preprocess the input to a classification function | PreProcessing |
Preprocess the input for a new set of test objects for classifier | PreProcessingPredict |
Print CrossValidation object | print.CrossValidation |
Print LearningCurve object | print.LearningCurve |
Project an n-dim vector y to the simplex Dn | projection_simplex |
Quadratic Discriminant Classifier | QuadraticDiscriminantClassifier |
Responsibilities assigned to the unlabeled objects | responsibilities |
Show RSSL classifier | rssl-formatting show,Classifier-method show,NormalBasedClassifier-method show,scaleMatrix-method |
Predict using RSSL classifier | decisionvalues,WellSVM-method predict,GRFClassifier-method predict,KernelLeastSquaresClassifier-method predict,LeastSquaresClassifier-method predict,LinearSVM-method predict,LogisticLossClassifier-method predict,LogisticRegression-method predict,MajorityClassClassifier-method predict,NormalBasedClassifier-method predict,SelfLearning-method predict,SVM-method predict,svmlinClassifier-method predict,USMLeastSquaresClassifier-method predict,WellSVM-method responsibilities,GRFClassifier-method rssl-predict |
Safe Semi-supervised Support Vector Machine (S4VM) | S4VM |
LinearSVM Class | S4VM-class |
Sample k indices per levels from a factor | sample_k_per_level |
Matrix centering and scaling | scaleMatrix |
Self-Learning approach to Semi-supervised Learning | SelfLearning |
SVM solve.QP implementation | solve_svm |
Create Train, Test and Unlabeled Set | split_dataset_ssl |
Randomly split dataset in multiple parts | split_random |
Convert data.frame to matrices for semi-supervised learners | SSLDataFrameToMatrices |
Plot RSSL classifier boundaries | stat_classifier |
Calculate the standard error of the mean from a vector of numbers | stderror |
Summary of Crossvalidation results | summary.CrossValidation |
Inverse of a matrix using the singular value decomposition | svdinv |
Taking the inverse of the square root of the matrix using the singular value decomposition | svdinvsqrtm |
Taking the square root of a matrix using the singular value decomposition | svdsqrtm |
SVM Classifier | SVM |
svmlin implementation by Sindhwani & Keerthi (2006) | svmlin |
Test data from the svmlin implementation | svmlin_example |
Train SVM | svmproblem |
Example semi-supervised problem | testdata |
Refine the prediction to satisfy the balance constraint | threshold |
Access the true labels when they are stored as an attribute in a data frame | true_labels |
Transductive SVM classifier using the convex concave procedure | TSVM |
Updated Second Moment Least Squares Classifier | USMLeastSquaresClassifier |
USMLeastSquaresClassifier | USMLeastSquaresClassifier-class |
wdbc data for unit testing | wdbc |
WellSVM for Semi-supervised Learning | WellSVM |
wellsvm implements the wellsvm algorithm as shown in [1]. | wellsvm_direct |
Convex relaxation of S3VM by label generation | WellSVM_SSL |
A degenerated version of WellSVM where the labels are complete, that is, supervised learning | WellSVM_supervised |
Implements weighted likelihood estimation for LDA | wlda |
Measures the expected error of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account | wlda_error |
Measures the expected log-likelihood of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account | wlda_loglik |